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Abstract. Let A be an idempotent algebra, α ∈ ConA such that A/α has

few subpowers, and m be a fixed natural number. There is a polynomial

time algorithm that can transform any constraint satisfaction problem over
A with relations of arity at most m into an equivalent problem which is m

consistent and in which each domain is inside an α block. Consequently if the

induced algebras on the blocks of α generate an SD(∧) variety, then CSP(A)
is tractable.

1. Introduction

A wide variety of combinatorial problems can be expressed within the framework
of constraint satisfaction problems (CSPs), where one searches for an assignment of
values to variables that satisfies certain constraints. If the constraint relations used
in the problem instances are restricted to a fixed finite set of relations, called the
template, then we get a restricted class of (non-uniform) CSPs. Solving a system of
equations over a finite algebra, satisfying Boolean formulae, or finding a 3-coloring
of graphs falls into this category. The dichotomy conjecture of Feder and Vardi
[6] states, that for every template the class of CSPs is solvable in polynomial time
(in the number of variables) or NP-complete. The algebraic study of the CSP
was initiated by Bulatov, Jeavons and Krokhin [4, 5], where they showed that the
algorithmic complexity of the CSP depends only on the set of polymorphisms of the
template. Under their approach the template is a finite set of subpowers of a finite
algebra A.

There are two algorithms that can solve the CSP in polynomial time for broad
classes of algebras. One is the so called bounded width algorithm where local con-
sistency checking is used to decide if a solution exists. This algorithm works if
and only if the template A generates a congruence meet semi-distributive variety
[1, 8]. The other algorithm is based on the few subpowers property [2, 7], where
each subuniverse of An has a generator set of polynomial size in n. These algebras
have a so called edge term. These two algorithms use fundamentally different ap-
proaches to the solution of CSP, although both of them handle the case when A
has a near-unanimity term.

In this paper we combine these two algorithms, or rather we show how they can
be executed in parallel to get an algorithm that can handle a larger class of algebras
than either of original one. In particular, we show that if A is a finite algebra in a
variety generated by idempotent algebras of few subpowers and of bounded width,
then the corresponding CSP is solvable in polynomial time.
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2. Bounded width and few subpowers

Instead of restricting the number of relations in the template, we restrict their
maximum arity. Adding new constraints to the template from the same relational
clone does not change the complexity of the problem, so this does not cause any dif-
ficulty and will simplify our notation. Now we review the definitions and theorems
we are going to extend in the next section.

Definition 2.1. Let A be a finite algebra. An instance of CSP(A) is a triple
(V,S,R) where V is the set of variables, S ⊆ P (V ) is the set of constraint scopes,
and R = {RI : I ∈ S } is an indexed set of constraint relations where RI is a
subuniverse of AI . A solution of the instance (V,S,R) is a function f : V → A
such that f |I ∈ RI for all I ∈ S.

Definition 2.2. We say that an instance (V,S,R) of CSP(A) is k-consistent, if
S = {S ⊆ V : |S| ≤ k }, and for each I, J ∈ S with I ⊆ J we have RI = RJ ∩AI .
The instance is empty if RI = ∅ for all (any) I ∈ S.

The following standard consistency checking algorithm of [6] can be used to
preprocess the instance without loosing solutions. First we add the missing scopes
with the full relation and then run the consistency algorithm. This algorithm checks
for each pair I ⊆ J of scopes whether RI = RJ∩AI holds. If it fails, then it replaces
RI with RI ∩ (RJ ∩AI) and RJ with RJ ∩ (RI ×AJ\I). Since the total number
of tuples in all relations in R is bounded by a polynomial in the number |V | of
variables, this process must stop in polynomial time. It is quite easy to see, that
we never loose (or add) a solution and that the resulting k-consistent instance is
unique, i.e., it does not depend on the order we have considered the scope pairs.

Theorem 2.3 (Consistency Checking Algorithm [6]). Let k be a fixed integer and
(V,S,R) be an instance of CSP(A) with relations of arity at most k. Then there
exists a unique k-consistent instance (V,S ′,R′) that can be computed in polynomial
time and has the same set of solutions as (V,S,R).

We do not define relational structures of bounded width, instead we just state
the main theorem of [1] for algebras. Note, that if A does not generate a congru-
ence meet semi-distributive variety, then the consistency checking algorithm with
bounded degree is not enough to decide whether the instance has a solution [8].

Theorem 2.4 (Bounded Width Algorithm [1]). Let k be a fixed integer and A be
a finite algebra in a congruence meet semi-distributive variety. Then an instance
of CSP(A) with relations of arity at most 2bk3 c has a solution if and only if the
corresponding unique k-consistent instance is nonempty. Consequently, the problem
can be solved in polynomial time.

An operation t is called idempotent, if it satisfies the equation t(x, . . . , x) ≈ x. An
idempotent operation t is a week near-unanimity operation, if it is at least binary
and satisfies the identities t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y).
We will use the following characterization of congruence meet semi-distributivity
with the existence of many weak near-unanimity terms.

Theorem 2.5 ([9]). A locally finite variety V is congruence meet semi-distributive
if and only if there exists an integer m > 1 such that V has weak near-unanimity
terms of all arities greater than m.
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Now we turn our attention to the few subpowers algorithm. An n-ary operation
t is called a cube operation [2, 10], if for each index 1 ≤ i ≤ n it satisfies a two-
variable equation of the form t(u1, . . . , un) ≈ x where u1, . . . , un ∈ {x, y} and
ui = y. Clearly, every cube operation is idempotent. A k + 1-ary operation t is a
k-edge operation if k ≥ 2 and it satisfies the identities

t(y, y, x, x, x, x, . . . , x) ≈ x,
t(x, y, y, x, x, x, . . . , x) ≈ x,
t(x, x, x, y, x, x, . . . , x) ≈ x,
t(x, x, x, x, y, x, . . . , x) ≈ x,

. . .
...

t(x, x, x, x, x, x, . . . , y) ≈ x.
Clearly, every k-edge operation is a cube operation. The 2-edge operations are pre-
cisely the Maltsev operations, satisfying the identities t(y, y, x) ≈ x and t(x, y, y) ≈
x. On the other hand, every k-ary near unanimity operation (satisfying the equa-
tions t(y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y) ≈ x) can be turned into a k-edge operation
by adding a dummy second variable.

We say that an algebra A has few subpowers [2], if the number of subalgebras
of An is bounded by 2p(n) for some polynomial function p. The following theorem
characterizes algebras of few subpowers.

Theorem 2.6 ([2]). For a finite algebra the following are equivalent: having few
subpowers, having a cube term, and having an edge term.

Let A be a fixed algebra with a k-edge term, and n be an arbitrary natural
number. By an index we mean a triple (i, a, b) ∈ {1, . . . , n} × A × A. We do
not define minority indices (the precise definition is Definition 3.6 in [7]), but for
our purposes it is enough that the set of minority indices is a subset of the set of
indices, and the exact defining property depends only on the pair a, b ∈ A and the
algebra A. An index (i, a, b) is witnessed in a subset Q ⊆ An if there exist elements
f, g ∈ Q such that f(1) = g(1), . . . , f(i− 1) = g(i− 1), f(i) = a and g(i) = b.

Definition 2.7. Let R be a subuniverse of An. We say that Q ⊆ R is a compact
representation of R if

(1) the same minority indices are witnessed in R and Q,
(2) R and Q has the same k − 1-element projections, and
(3) |Q| is bounded by a k − 1-degree polynomial in n.

Theorem 2.8 ([2, 7]). If Q is a compact representation of a subpower R ≤ An,
then the subuniverse generated by Q is R.

The following theorem works for uniform instances of CSP where there is no
bound on the arity of the constraint relations. A similar uniform (global tractabil-
ity) result seem to hold for the bounded width case (through private communication
with Libor Barto).

Theorem 2.9 (Few Subpowers Algorithm [7]). Let A be a finite algebra with few
subpowers. For every uniform instance (V,S,R) of CSP(A) the compact repre-
sentation of the solution set can be computed in polynomial time in the size of the
input.
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This algorithm is also known as the Dalmau Algorithm, since it is a slight mod-
ification of the one in [3]. The essential computational step in the proof is the Next
Procedure, that takes a compact representation of a subuniverse R ≤ An, a con-
straint scope I ⊆ V and a constraint relation RI ≤ AI and computes the compact
representation of { f ∈ R : f |I ∈ RI }. The running time of the Next Procedure is
bounded by a fixed polynomial in n|RI |.

Now we prove three lemmas on compact representations that can be derived
from the original proofs quite easily but were not observed before. In particular,
it is curious that Bulatov and Dalmau in [3] have not observed that the compact
representation of the intersection R1 ∩ R2 of two relations can be computed from
the compact representations of R1 and R2.

Lemma 2.10. Let A be a fixed finite algebra with few subpowers. If R1, . . . , Rm

are subpowers of A and R is a relation defined by a primitive positive formula ϕ
using R1, . . . , Rm, then the compact representation of R can be computed from the
compact representations of R1, . . . , Rm in polynomial time where the size of the
input is the size of the formula ϕ.

Proof. Assume, that each of the relations R1, . . . , Rm occurs exactly once in ϕ
(otherwise we duplicate each relation as many times as needed). Let the arities of
R,R1, . . . , Rm be n, n1, . . . , nm, respectively. Then the size of the input is at least
n+ n1 + · · ·+ nm plus the number of equality predicates in ϕ.

First, we construct the compact representation of

S = An ×R1 × · · · ×Rm.

This can be done, since there are only polynomially many projections we have
to consider and we can just freely combine projections coming from the compact
representations of R1, . . . , Rm. Second, we can go over all minority indices, and
for each (i, a, b) we can find a witness by choosing a witness from the appropriate
Rj where the coordinates of Rj contain i and arbitrary elements from all other
relations.

Once we have the compact representation of S, then we apply the Next Procedure
repeatedly with the equality constraint between pairs of coordinates as described
in ϕ. We have only polynomially many equality predicates, so this part also runs
in polynomial time.

Finally, we simply take the projection of this relation to the first n coordinates
and we get R. The compact representation of the projection can be obtained from
the projection of the compact representation by removing duplicate witnesses of
projections and minority indices. �

Lemma 2.11. Let A be a fixed finite algebra with few subpowers and m be a fixed
integer. If R1, . . . , Rm are subuniverses of An such that R = R1 ∪ · · · ∪Rm is also
a subuniverse, then the compact representation of R can be computed in polynomial
time (in n) from the compact representations of R1, . . . , Rm.

Proof. It is clear, that the union of the witnesses of small projections in R1, . . . , Rm

are witnesses in R. For a minority index (i, a, b) and a pair 1 ≤ j, k ≤ m consider
the relation

{ (x1, . . . , xn, y1, . . . , yn) ∈ A2n : (x1, . . . , xn) ∈ Rj , (y1, . . . , yn) ∈ Rk,

x1 = y1, . . . , xi−1 = yi−1, xi = a and yi = b }
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defined by a primitive positive formula. Clearly, this relation is nonempty if and
only if the (i, a, b) minority index can be witnessed by f ∈ Rj and g ∈ Rk. By
trying out all possible choices of 1 ≤ j, k ≤ m and using Lemma 2.10 we can find
witnesses of all minority indices that can be witnessed in polynomial time. �

To our knowledge, it is an open question whether the compact representation of
the subuniverse generated by R1 ∪ R2 can be computed in polynomial time from
the compact representations of R1 and R2.

Lemma 2.12. Suppose, that R1 and R2 are subuniverses of An with R1 ⊆ R2.
If R1 and R2 witness the same number of k − 1-element projections and minority
indices, then R1 = R2.

Proof. Take a compact representation Q of R1. Since R1 ⊆ R2, Q witnesses some
k−1-element projections and minority indices of R2. But R2 has the same number
of witnesses as R1, so Q witnesses all k−1-element projections and minority indices
that can be witnessed in R2. Thus by Theorem 2.8, Q generates both R1 and R2,
and therefore R1 = R2. �

3. Combined algorithm

In this section let A be a fixed finite idempotent algebra and α ∈ Con(A) be a
congruence such that A/α has an edge term. We will slightly modify the definitions
of the previous section to get our new tractability result.

Definition 3.1. Let V be a set of variables and I ⊆ V be a constraint scope. By
a Maltsev constraint on I we mean a subuniverse MI of AI × (A/α)V \I . Thus for
each f ∈MI and i ∈ I, j ∈ V \ I we have f(i) ∈ A and f(j) ∈ A/α.

As can be seen in the definition, each Maltsev constraint not only specifies the
behavior of the solutions on the scope of variables, but also on the other variables
modulo α. Since A is idempotent and A/α has few subpowers, we can fully specify
Maltsev constraints by compact representations.

Definition 3.2. By the compact representation of a Maltsev constraint MI ≤ AI×
(A/α)V \I we mean the collection of compact representations of the subuniverses

MI(g) = {h ∈ (A/α)V \I : (g, h) ∈MI }

for all choices of g ∈ AI .

Note, that here we use that A is idempotent, otherwise MI(g) would not be a
subuniverse of (A/α)V \I .

Definition 3.3. A Maltsev instance is a triple (V,S,M) where V is the set of
variables, S ⊆ P (V ) is the set of constraint scopes and

M = {MI ≤ AI × (A/α)V \I : I ∈ S }

is an indexed set of Maltsev constraints given by their compact representation. A
solution is a function f : V → A such that (f |I , (f |V \I)/α) ∈MI for all I ∈ S.

We want to use a version of the consistency checking algorithm, but for that
we need the following notion of notations of extension and projection of a Maltsev
constraints.
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Definition 3.4. Let MI ≤ AI × (A/α)V \I be a Maltsev constraint and J ⊆ V be
a constraint scope (neither I ⊆ J nor J ⊆ I is assumed). By the projection of MI

to J we mean the Maltsev constraint on J defined as

proJ(MI) = { (f |J , (f |V \J)/α) ∈ AJ × (A/α)V \J : f ∈ AV , (fI , (fV \I)/α) ∈MI }.

Lemma 3.5. Suppose, that I, J ⊆ V , max(|I|, |J |) is bounded by some constant
and MI is a Maltsev constraint on I. If I ⊆ J or J ⊆ I, then the projection of MI

to J can be computed in polynomial time (in the number |V | of variables).

Proof. Since the sizes of I and J are bounded, we only have to verify that for all
g ∈ AJ the compact representation of the subpower proJ(MI)(g) ≤ (A/α)V \J can
be computed in polynomial time.

First consider the case when I ⊆ J . Then by definition,

proJ(MI)(g) = {h|V \J : h ∈MI(g|I) and h|J\I = (gJ\I)/α }.
This compact representation is defined by a primitive positive formula (using con-
stant relations and projections) using MI(g|I), thus by Lemma 2.10 it can be com-
puted in polynomial time.

Now consider the case when J ⊆ I. In this case

proJ(MI)(g) = { (g′|I\J , h) : ∃g′ ∈ AI\J , h ∈MI((g, g′|I\J)) }.
Clearly, if g′ is fixed, then the compact representation of

{ (g′|I\J , h) : h ∈MI((g, g′|I\J) }
can be computed from that of MI((g, g′|I\J) (e.g., by using Lemma 2.10). Thus

we know that proJ(MI)(g) is a subuniverse of AV \J , and it is a disjoint union of
subuniverses whose compact representations we can compute in polynomial time.
Then by Lemma 2.11 we can compute the compact representation of proJ(MI)(g)
in polynomial time. �

Definition 3.6. We say that a Maltsev instance (V,S,M) of CSP(A) is k-consistent,
if S = {S ⊆ V : |S| ≤ k }, and for each I, J ∈ S with I ⊆ J we have MI =
proI(MJ). The instance if empty if RI = ∅ for all (any) I ∈ S.

Lemma 3.7. Let k be a fixed integer and (V,S,R) be an instance of CSP(A)
with relations of arity at most k. Then there exists a unique k-consistent Maltsev
instance (V,S ′,M′) that can be computed in polynomial time and has the same set
of solutions as (V,S,R).

Proof. First, put M = {MI : I ∈ S } where MI = RI × (A/α)V \I . Clearly
(V,S,M) is a Maltsev instance and has the same set of solutions as (V,S,R). Next
put S ′ = { I ⊆ V : |I| ≤ k } and define MI = AI × (A/α)V \I for I ∈ S ′ \ S and
put M′ = {MI : I ∈ S ′ }. Every function satisfies these new Maltsev constraints,
so (V,S ′,M′) has the same set of solutions as (V,S,R).

The instance (V,S ′,M′) is not yet k-consistent, but if for I, J ∈ S ′, I ⊆ J
we have a failure MI 6= proI(MJ) of consistency, then we can replace MI with
MI ∩ proI(MJ) and MJ with MJ ∩ proJ(MI). From Definition 3.4 it is clear that
any function that satisfies the constraint MI (or MJ) also satisfies the constraint
proJ(MI) (proI(MJ), respectively), therefore the smaller Maltsev instance has the
same set of solutions as the original one.

Since in each modification step the total number witnessed small projects and
minority indices in all Maltsev relations MI , I ∈ S ′ must decrease by Lemma 2.12,
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and this total number was bounded by a polynomial in n, therefore this consistency
failure correcting procedure must stop in polynomially many steps. Thus we have
shown the existence of a k-consistent Maltsev instance (V,S ′,M′) that has the
same set of solutions as (V,S,R).

The argument for the uniqueness of (V,S ′,M′) is analogous to the proof of
Theorem 2.3. If (V,S ′′,M′′) is a k-consistent Maltsev instance inside of a Maltsev
instance (V,S ′,M′), then in each consistency failure correcting step applied to
(V,S ′,M′) the new Maltsev instance will still contain (V,S ′′,M′′). �

Lemma 3.8. Let (V,S,M) be a k-consistent Maltsev instance of CSP(A). Then
for each element h ∈M∅, the instance (V,S,R) with R = {RI : I ∈ S } and

RI = {f |I : f ∈MI , ((f |I)/α, f |V \I) = h }
is a k-consistent instance of CSP(A). Moreover, (V,S,M) is empty if and only if
(V,S,R) is empty.

Proof. Follows easily from the definitions. �

Theorem 3.9. Let A be an idempotent algebra, α ∈ Con A such that A/α has
few subpowers and the α-blocks (which are subalgebras of A) generate a congruence
meet semi-distributive variety. Then CSP(A) can be solved in polynomial time for
instance where the maximum arity of used relations is bounded.

Proof. Take an instance (V,S,R) of CSP(A) and let k be a bound on the maximum
arity of relations in R. By Lemma 3.7 we can convert the instance (V,S,R) into
an equivalent Maltsev 2bk2 c-consistent instance (V,S ′,M′). If (V,S ′,M′) is empty,
then (V,S,R) have no solution by Lemmas 3.7 and 3.8. On the other hand, if
(V,S ′,M′) is non-empty, then we can take an element h ∈M∅. By Lemma 3.8 we
have a nonempty 2bk2 c-consistent instance (V,S ′,R′) strategy, such that for each
i ∈ V the domain of the i-th variable is a subuniverse of an α-class. We can encode
this instance as an instance of CSP(B) where

B =
∏
i∈i

h(i)

is the α-classes that occur. Since the α-classes generate congruence meet semi-
distributive varieties, B is also generates an congruence meet semi-distributive va-
riety, therefore by Theorem 2.4 we know this instance has a solution. Therefore
(V,S,R) has a solution as well. �

Corollary 3.10. Let V be a pseudo-variety (containing finite algebras closed under
subalgebras, homomorphic images and finite direct products) generated by algebras
of bounded width and Maltsev algebras. Then for every algebra A ∈ V and finite
set of relations Γ ⊂ SP(A) the problem CSP(Γ) can be solved in polynomial time.

Proof. We know that CSP(A) can be solved in polynomial time both for algebras
of bounded width and Maltsev algebras. It is true in general that if CSP(A)
can be solved in polynomial time, then the same holds for any subalgebras and
homomorphic images of A. So the only problem we face is about finite products.

We know that finite products of bounded width algebras has bounded width as
well (from the SD(∧) description). The same result is true algebras of bounded
width, by an observation of R. McKenize, that the direct product of algebras of few
subpowers has few subpowers.
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Finally, we have to show that the direct product of a Maltsev algebra and n
algebra of bounded width is tractable. However, in the direct product we do have
the α projection congruence which satisfies the conditions of Theorem 3.9, which
finishes the proof. �
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